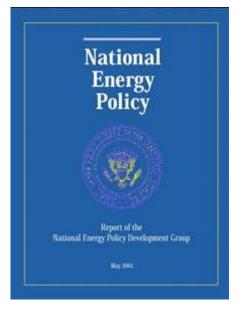
Overview of Programs and Activities

Distributed Energy and Electric Reliability

Eric Lightner
Office of Energy Efficiency and Renewable Energy

October 24, 2002

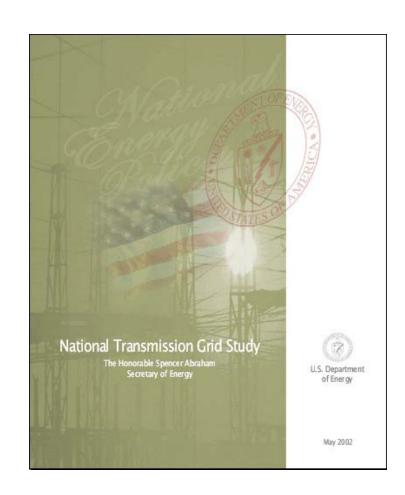
National Energy Policy



Of the 105 total recommendations...

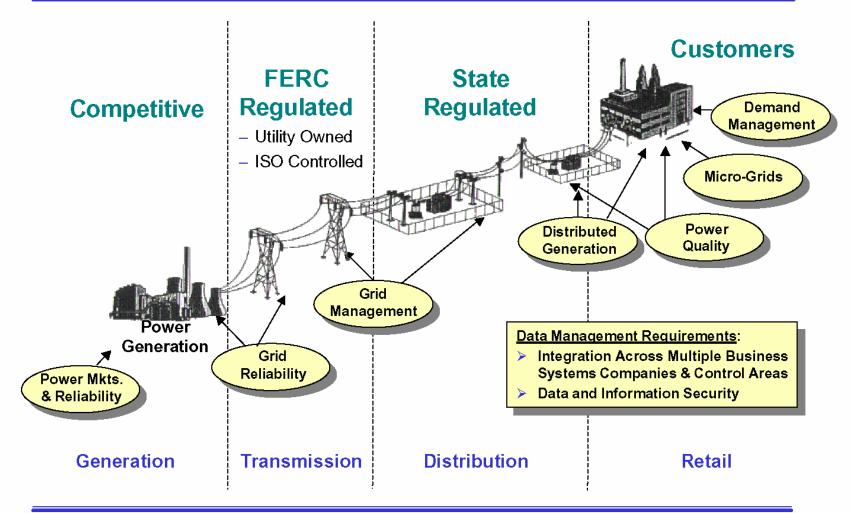
- 21 affect distributed energy
- 17 affect renewable energy
- 13 affect T&D
- 8 affect international activities

www.pi.energy.gov



National Transmission Grid Study

- National Energy Policy
 Recommendation 7.4a –
 Examine the benefits of
 establishing a national
 grid; identify transmission
 bottlenecks and measures
 to remove them
- Final report released May 8
- Website: www.ntgs.doe.gov


National Transmission Grid Study

- Recognizes the importance of DG as an alternative to transmission expansion
- Recommends that regional transmission organizations (RTOs) be responsible for maintaining the reliability of the grid and ensuring that the transmission bottlenecks are addressed
- DOE will continue to work with NGA, regional governors' associations, and NARUC to remove regulatory barriers to voluntary customer loadreduction programs, and targeted energy-efficiency and distributed-generation programs that address transmission bottlenecks and lower costs to consumers

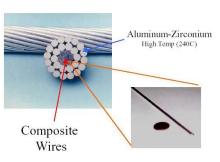
Electric Infrastructure – Needs and Opportunities

Distributed Energy Resources

Technology Development:Microturbines, recip engines, fuel cells, storage

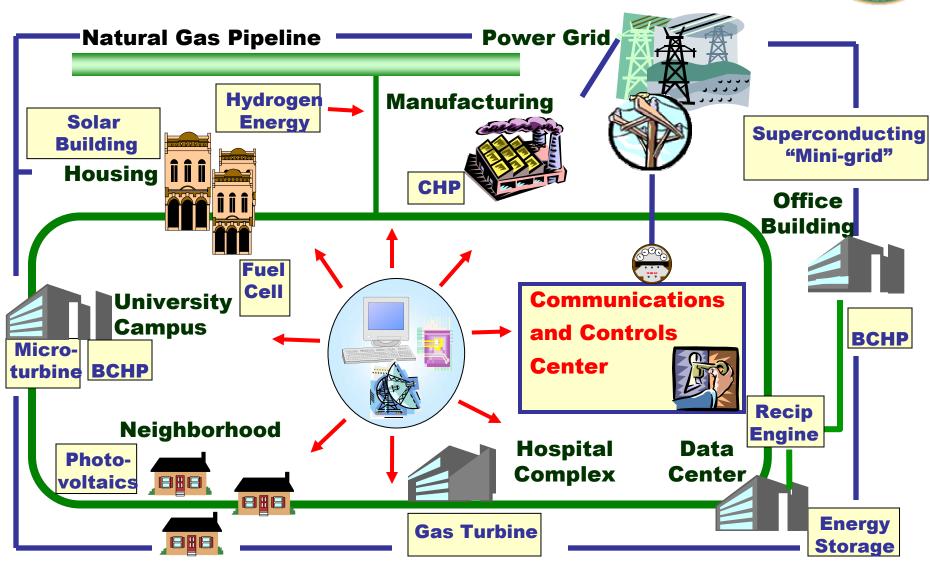
Technology Packages: CHP systems, hybrids

End-use Integration: Demand management, controls, sensors



Utility Integration: Interconnection, power quality, power electronics

Distribution Systems:Load management, power parks, microgrids, storage


Composite Conductor

Transmission Systems: Reliability, security

Distributed Energy System

Program Areas

- Distributed Generation Technologies
 - Microturbines and Industrial Gas Turbines
 - Distribution Interconnection
 - Recips
 - Thermally Activated Devices
 - Technology Base
- End-Use Integration
 - Systems Integration
 - CHP
- HTS
- Transmission Reliability
 - Electricity Restructuring
 - Storage

Distributed Gas Fired Technologies

2000

- \$900-\$1,200/kW
- 17-30% Efficiency
- Double digit ppm NO,

2007

Cost competitive with the market

Microturbines

- 40% Efficiency
- Single digit ppm NO_v

1997

- \$4,000-\$10,000/kW
- 80 degrees C
- Natural gas and propane fuels

2010

- \$600/kW
- 120-140 degrees C

Fuel Cells

Multiple fuels

1992

- 29% efficiency
- Double digit NO.
- \$600/kW

2001

- 38% Efficiency
- Single digit NO,
 - \$400/kW

2010

with the market

Gas

Turbines

2000

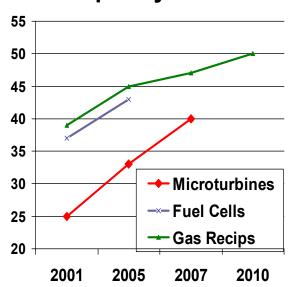
- \$300-\$400/kW
- 25-40% Efficiency
- 2-3 grams/kWh NO_x

Reciprocating

Engines

2007

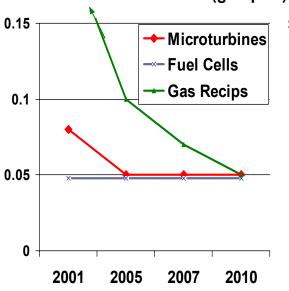
- Cost competitive with the market
- 50% Efficiency
- < 0.15 grams/kWh NO.


Cost competitive

<5 ppm NO.

Technology Comparison

Simple Cycle Efficiency

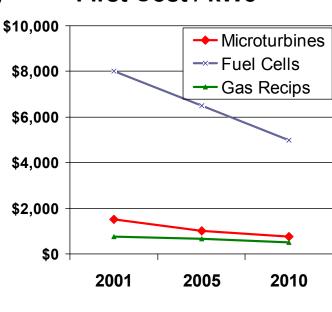


Main Challenge

Microturbine Efficiency Gains

Combustor Temp Limits
Gas Pressure Limits
Turbine Cycle Inefficiencies
Short Track Record

NOx Emissions (g/bhp-hr)

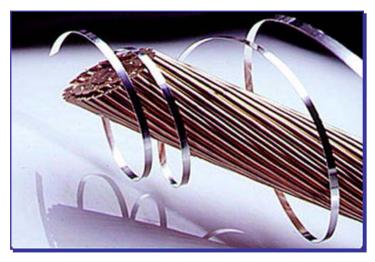


Main Challenge

Engine Emissions Reduction

Combustion Time Limits
Exhaust Temp Limits
Aftertreatment Integration
Multiple Applications

First Cost / kWe

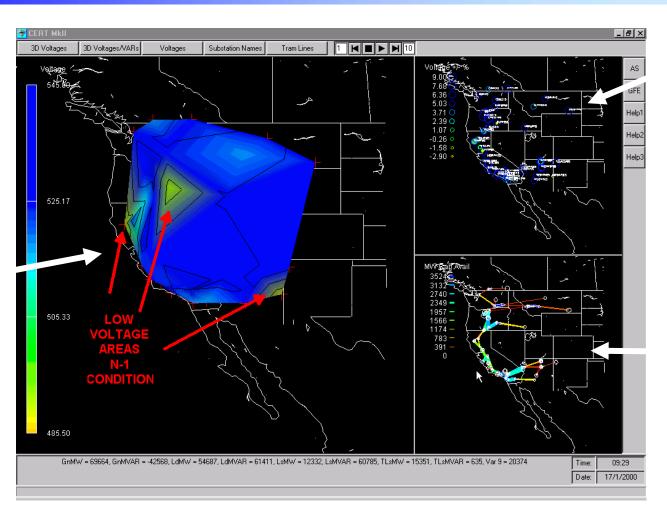

<u> Main Challenge</u>

Fuel Cell Cost Reduction

Gas Reformer Costs
Stack Durability
Power Electronics Costs
Low Volume Structure

Superconductivity

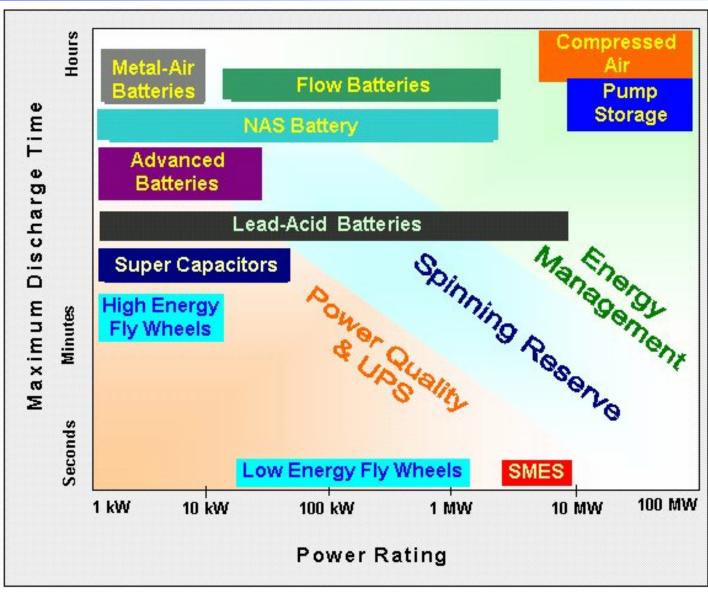
Goals


- Wires: HTS wires will carry 100 times the current without the resistance losses of comparablediameter copper wire.
- Equipment: HTS equipment is half the size of conventional alternatives with the same power rating, and has only half the energy losses.

Transmission Tools

Visual
Perspective
Selection

Main Panel Isovoltages

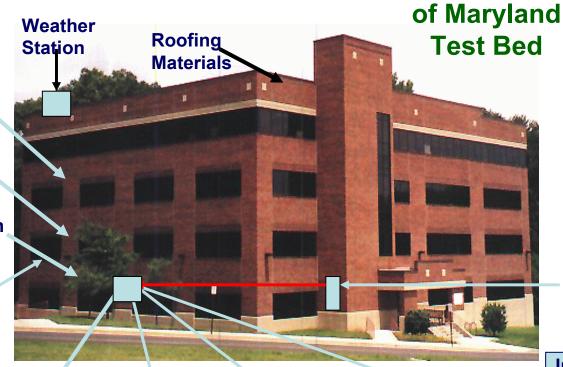


Sub Panel1 Alarms

> Sub Panel2 Encoded Flows

Energy Storage

Integration of Distributed and CHP Systems


Windows Thermal Pane

Advanced Building Materials. Insulation

Foundation

Ventilation

- -Ducts
- -Piping
- -Fans
- -Blowers

University

Low **Voltage** Grid **Controls** DG

Instrumentation

Power

Heating/Cooling

Humidity Control

Storage

Reject

System Integration R&D

- Universal plug-and-play interconnection system
 - Inverter-based plug-and-play across multiple technologies
 - Fully integrated utility-grade switchgear, metering, and system-level command and control for synchronous machines <500kW
- Enterprise energy management technology
 - Aggregation
 - Microgrids
- Automated adaptive intelligent interconnection and control
- Modeling
- Laboratory and Field Testing

NREL DER Test Facility

Test Equipment

- •Distributed Generation
- •Distributed Storage
- •Protective Equipment
- Switches
- •Electronics
- •Communications and Controls

Measurements

- Power Quality
- Stability
- •Response to Disturbances
- Performance/ Functionality

Specific Tests

- •Validation of P1547 Requirements
- •Development of P1589 Procedures
- •Over/Under Voltage
- •Over/Under Frequency
- •Islanding
- Surge Withstand

Pathway for Integrated DER Systems and Controls

End-user site A - G2 / Automatic economic Single-site dispatch system Storage control and communication Meter Real-time application system and database server Loads/building controls End-user site B Internet G4 Multisite control and Single-site control and communication system G5] communication - Meter system Loads/building controls SCADA systems at electricutilities End-user site C Storage Single-site control and Meter Bectricity communication prices system Loads/building controls

Centralized hierarchical control at power plants

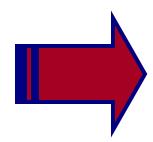
DER systems integrated and controlled at a single sites

"Virtual utilities" with aggregated control of integrated DER systems across multiple sites

2000

2005

2010


End State Enabled by the C&C Program

Effective Integration of Distributed Energy Systems into Customer Operations and Utility Systems

Current

- Radial grid one-way flow
- Electromechanical devices
- Utility control
- Rigid architecture

End State

- "Plug&play" protocols
- Digital devices
- Customer control
- Flexible architecture

Integration and Controls Demonstrations

- Solicitation for integrated demonstration of communication and control solutions to be released in November
- Demonstrate sensing, communication, information and control technologies to:
 - achieve a seamless integration of multi-vendor DER units at aggregation levels that meet individual user requirements for facility operations
 - serve as resource options for electric and natural gas utilities
- The fully demonstrated DER aggregation system will lead to real-time, interactive customer-managed service networks to achieve greater customer value.

Industry-Driven Roadmap Process

Electric Utilities,
Power Marketers,
Independent System
Operators

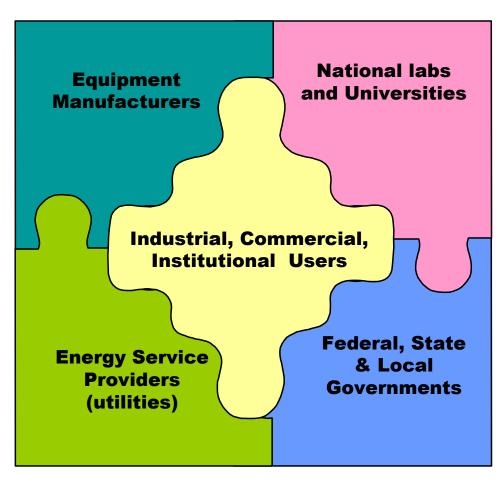
Energy Service Companies

Trade Associations

PARTICIPANTS

Industrial and Commercial Users

Federal Energy Regulatory Commission


Technology
Manufacturers
and Suppliers

State Public Utility
Commissions

Strategic Partnerships

- www.eren.doe.gov/der
- Technical publications
- Workshops and conferences
- Technology planning
- Cost-shared RD&D

